Предварительный анализ включает:

Определение выборочных долей (р) и их ошибок (тр) при альтернативной группировки вариант

$$P \pm mp\%$$

$$65,0 \pm 15,0\%$$

На основании качественных данных составление кросс-таблиц, диаграмм

кросс-таблицы могут быть формата:

- **2** x 2
- 2 x n
- n x 2
- n x m

Опять «2» ?

Возраст	Кол-во (n=50)	%
<= 30	10	20,0%
30-40	15	30,0%
40-50	15	30,0%
50-60	10	20,0%
>= 60	5	10,0%

Жалобы	Кол-во	%
Боль	5	25,0%
Сонливость	3	15,0%
Тошнота	5	25,0%
Рвота	2	10,0%
Дискомфорт	5	25,0%
Итого	20	100%

Дискриминантный анализ Таблица 2x2

Тест		Заболе	евание
		Есть	Нет
Есть		a	b
Признак	Нет	C	d

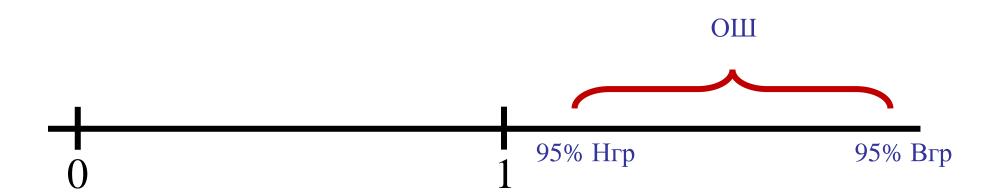
Дискриминантный анализ Критерий согласия Пирсона – χ²

Chi-Square Tests				
	Value	df	Asymp. Sig. (2-sided)	
Pearson Chi-Square	9,693 ^a	3	,027	
Likelihood Ratio	11,563	3	,009	
Linear-by-Linear Association	4,179	1	,041	
N of Valid Cases	36			

a. 5 cells (62,5%) have expected count less than 5. The minimum expected count is ,33.

Многопольные таблицы

	гр1	гр2	гр3	гр4	
пр1					
пр2					
пр3					
пр4					
пр5					


Статистические данные по таблице 2х2

- ✓ Исход
- ✓ AP, ER (абсолютный риск)
- ✓ APK, CER абсолютный риск в группе контроля
- ✓ APЛ, EER абсолютный риск в группе лечения
- **✓** ДИ, СІ (доверительный интервал)
- У OP, RR (относительный риск)
- ✓ COP, RRR (снижение относительного риска)
- ✓ CAP, ARR (снижение абсолютного риска)
- ✓ ПОР, IRR (повышение относительного риска)
- ✓ ПАР, IAR (повышение абсолютного риска)
- **✓** ИПВ (индекс потенциального вреда)
- ✓ КПВ, NNТ (количество подлежащих воздействию)
- ✓ Шанс, Odds
- ✓ ОШ, ОК (отношение шансов)
- ✓ Чувствительность, Sensitivity
- ✓ Специфичность, Specificity
- **✓** Прогностическая ценность теста
- ✓ Прогностическая ценность отрицательного результата теста
- ✓ Прогностическая ценность положительного результата теста
- **✓** ОП (отношение правдоподобия)
- **✓** ОП+ (отношение правдоподобия положительного результата теста)
- **✓** ОП- (отношение правдоподобия отрицательного результата теста)
- ✓ и др.

Тест		Группы	
16	:C1	Основная	Контроль
Призиви	Есть	а	b
Признак	Нет	С	d

$$III = \frac{p}{1-p} \qquad OIII(OR) = \frac{ad}{bc}$$

$$95\% \ \mathcal{J}III(CI) = e^{\ln OIII \pm 1,96\sqrt{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}}}$$

Тест		Заболе	евание
		Есть	Нет
Помолом	Есть	а (ИП)	b (ЛП)
Признак	Нет	с (ЛО)	d (NO)

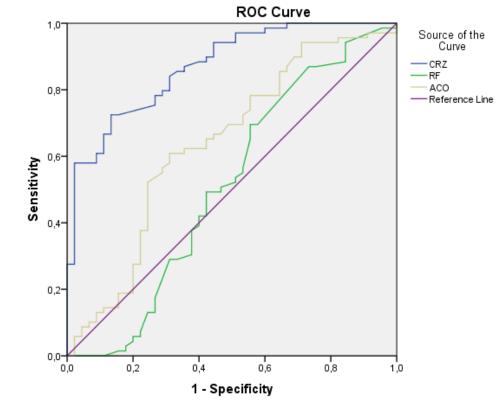
Чувствительность
$$(Sn) = \frac{\Pi\Pi}{\Pi\Pi + \PiO} \times 100\%$$

Специфичность (Sp) =
$$\frac{\text{ИO}}{\text{ИО} + \text{Л}\Pi} \times 100\%$$

$$pPV = \frac{M\Pi}{M\Pi + J\Pi\Pi} \times 100\%$$

$$nPV = \frac{MO}{MO + JIO} \times 100\%$$

Тест		Заболе	евание
		Есть	Нет
Есть		а (ИП)	b (ЛП)
Признак	Нет	с (ЛО)	d (NO)


Практичность	LR-	LR+
Отлично	< 0,1	≥ 10
Хорошо	[0,1-0,2)	[5-10)
Посредственно	[0,2-0,5)	[2-5)
Не пригоден	\geq 0,5	< 2

$$LR + = \frac{4yвствительность}{100 - Специфичность}$$

$$LR-=rac{100 - Чувствительность}{Специфичность}$$

$$\mathcal{A}K = \frac{\mathcal{U}\Pi + \mathcal{U}O}{\mathcal{U}\Pi + \mathcal{I}\Pi + \mathcal{I}O + \mathcal{U}O} \times 100\%$$

ROC-анализ

Diagonal segments are produced by ties.

Area Under the Curve					
Test Result Variable(s)	Area	Std. Error Asy	Std. Error Asymptotic Sig.	Asymptotic 95% Confidence Interval	
()				Lower Bound	Upper Bound
CRZ	,871	,032	,000	,808,	,934
RF	,511	,060	,837	,394	,628
ACO	,639	,055	,013	,531	,746

ROC-анализ: определение точки отсечения (COP)

Coordinates of the Curve					
Test Result Variable(s)	Positive if	Sensitivity	1 -		
	Greater Than		Specificity		
	or Equal To				
ROC Curve 1,0 Source of the					
Curve — CRZ — RF	,5500	1,000	,978		
0,8 ACO Reference Line	,7000	1,000	,956		
Sensitivity 9.0	,8500	,982	,889		
5 0,4	,9500	,966	,867		
0,2	• • •	• • •	•••		
0,0 0,2 0,4 0,6 0,8 1,0	•••	• • •	•••		
1 - Specificity Diagonal segments are produced by ties.	187,3000	,029	,015		
$p\left(p\left(\frac{C}{2}+\frac{C}{2}\right)\right)$	223,1500	,014	,007		
$\max R: \left\{ R = \sqrt{Sn^2 + Sp^2} \right\}$	241,0000	,000	,000		

Корреляция

(от лат. correlatio «взаимосвязь»)

или корреляционная зависимость — статистическая взаимосвязь двух или более случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми)

Линейная или нелинейная корреляция

А	Б
2	7
4	10
5	9
6	12
10	16
14	20
20	25
22	27
29	35
32	36
40	45

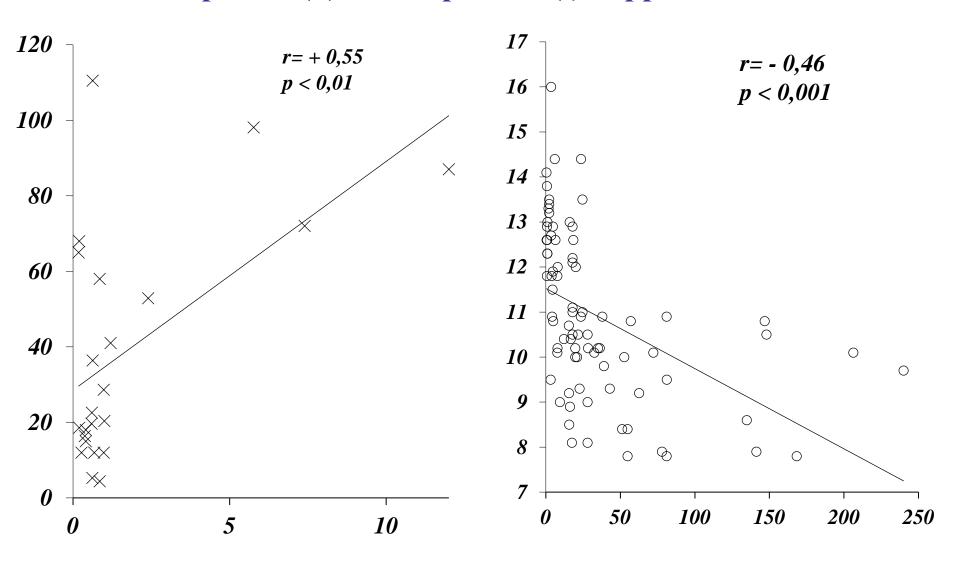
А	Б			
2	5			
4	15			
5	25			
6	35			
10	100			
14	200			
20	402			
22	450			
29	950			
32	1100			
40	1550			

Прямая (+) или обратная (-) корреляция

Уровень гемоглобина	Содержание железа			
10,2	4			
10,3	4,1			
10,3	4,2			
10,5	4,3			
10,5	4,5			
10,6	4,6			
10,6	4,6			
10,7	4,6			
10,9	4,8			
11	4,9			
11,2	5			
11,3	5,1			
11,5	5,2			

Возраст новорожденного, дни	ЧСС		
1	175		
2	170		
3	165		
5	160		
8	160		
10	158		
12	155		
15	149		
29	135		
32	132		
40	135		

$$r = 0.094$$


$$r = -0.096$$

Количественная или качественная корреляция

Уровень гемоглобина	Содержание железа
10,2	4
10,3	4,1
10,3	4,2
10,5	4,3
10,5	4,5
10,6	4,6
10,6	4,6
10,7	4,6
10,9	4,8
11	4,9
11,2	5
11,3	5,1
11,5	5,2

Возрастная группа	Средний САД
1 (до 20 лет)	115,1
2 (21-30 лет)	120,2
3 (31-40 лет)	122,6
4 (41-50 лет)	128,3
5 (51-60 лет)	130,1
6 (61-70 лет)	132,3
7 (71-80 лет)	135,4
8 (> 80 лет)	139,9

Прямая (+) или обратная (-) корреляция

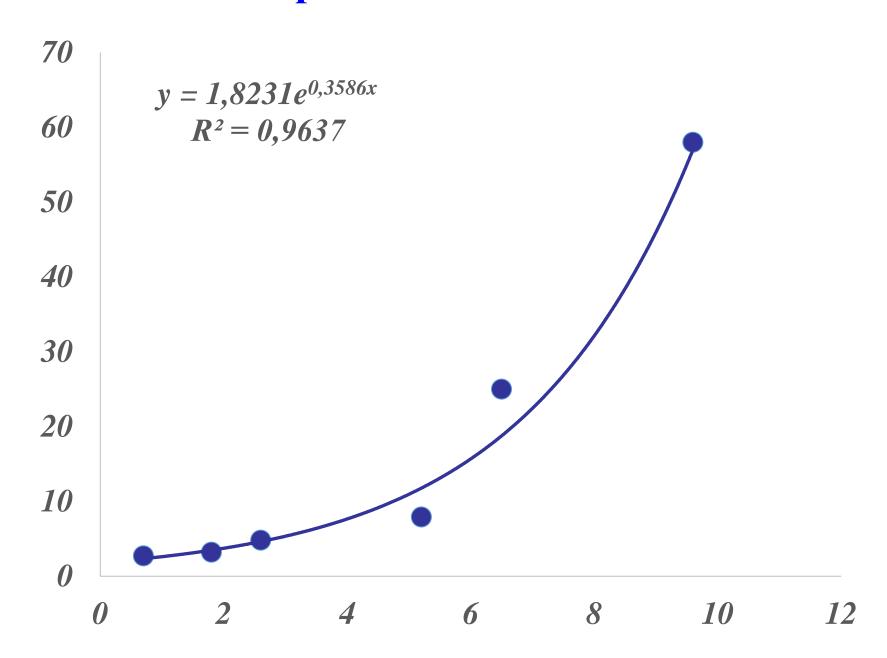
«Миф» о коэффициенте корреляции

Если 0.30 < r < 0.50 — то слабая корреляция Если 0.50 < r < 0.70 — то умеренная корреляция Если 0.70 < r — то сильная корреляция Абсолютная ложь

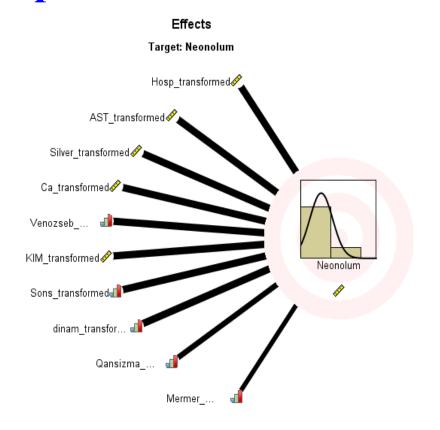
Коэффициент корреляции должен сопровождаться статистической значимостью, которая оценивается односторонним или двусторонним критерием значимости: Например:

при n= 1000; r=0,07; p = 0,027 – стат. достоверная при n= 10; r=0,70; p=0,051 – стат. недостоверная

- > Линейная корреляция (с Z-преобразованием Фишера)
- > Нелинейная корреляция
- > Корреляция Пирсона (для качественных данных)
- **У** Корреляция Тай-б-Кэндала
- > Корреляция Спирмена
- > и т.д.


Регрессионный анализ

Регрессионный анализ статистический метод исследования влияния одной или нескольких независимых переменных на зависимую переменную


Виды регрессионных анализов

- > Линейная
- > Нелинейная
- > Порядковая
- > Категориальная
- > Логистическая
- > Мультиноминальная
- > Метод наименьших квадратов
- > Регрессия Кокса и т.д.

Регрессионный анализ

Регрессионный анализ

Результат = $A_0 + A_1^* \Phi$ актор₁ + $A_2^* \Phi$ актор₂ + ... + $A_{\kappa}^* \Phi$ актор_{κ}

Далее полученная формула проходит «экзамен», оценивается специфичность, сенситивность и т.д. и естественно оценивается статистическая значимость результатов

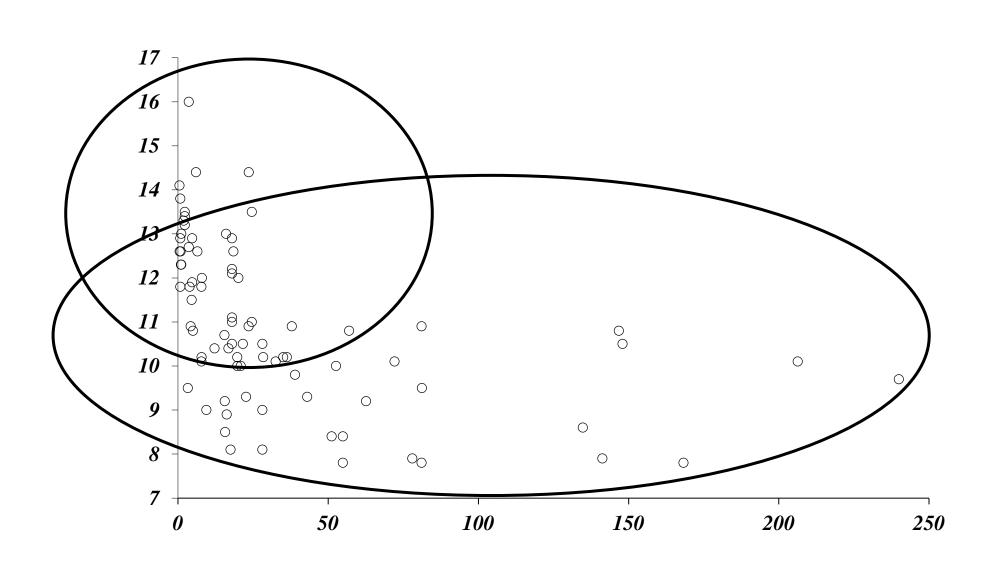
Дисперсионный анализ

Задачей дисперсионного анализа является изучение влияния одного или нескольких факторов на рассматриваемый признак.

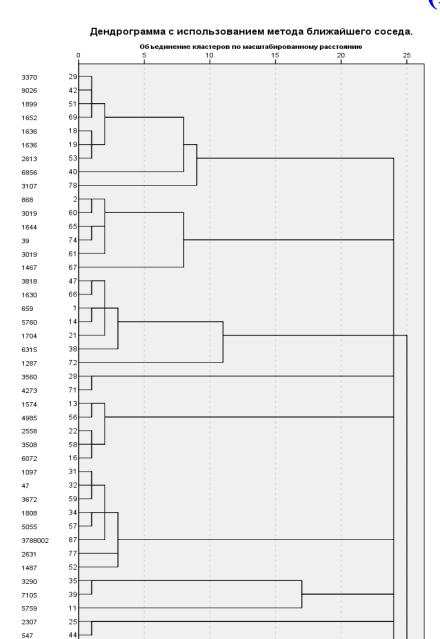
Иногда ее называют «тест ANOVA»

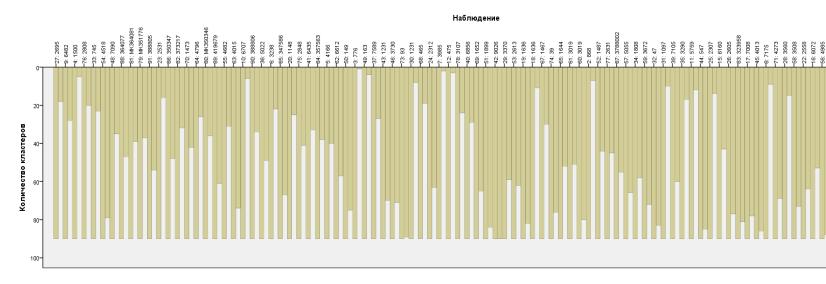
Дисперсионный анализ

- > Однофакторный дисперсионный анализ
- > Двухфакторный дисперсионный анализ
- > Многофакторный дисперсионный анализ

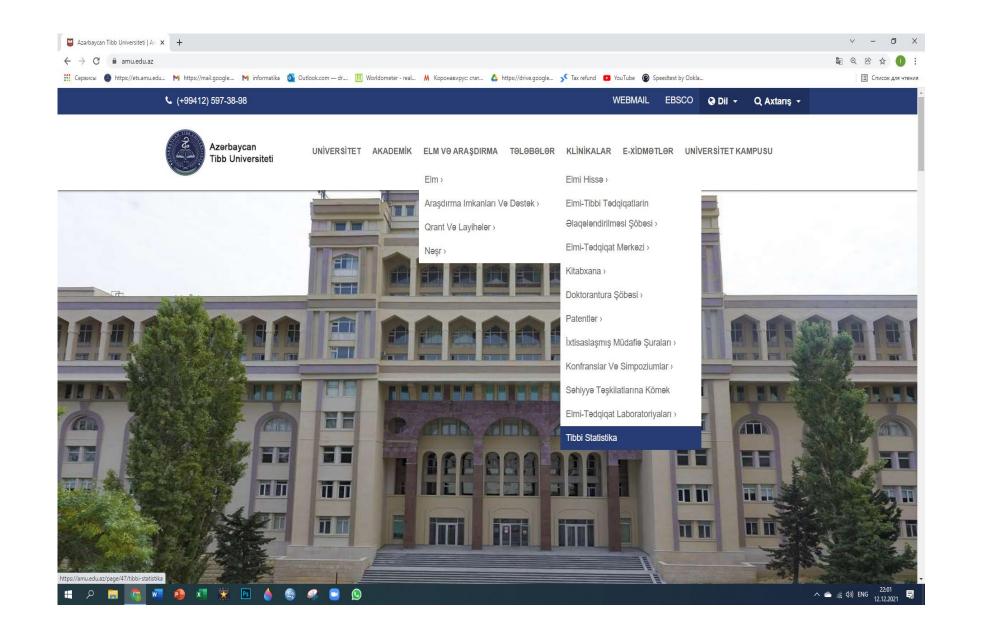

$$F_{pacu} = rac{d_{\phi a \kappa m}}{d_{ocm}}$$

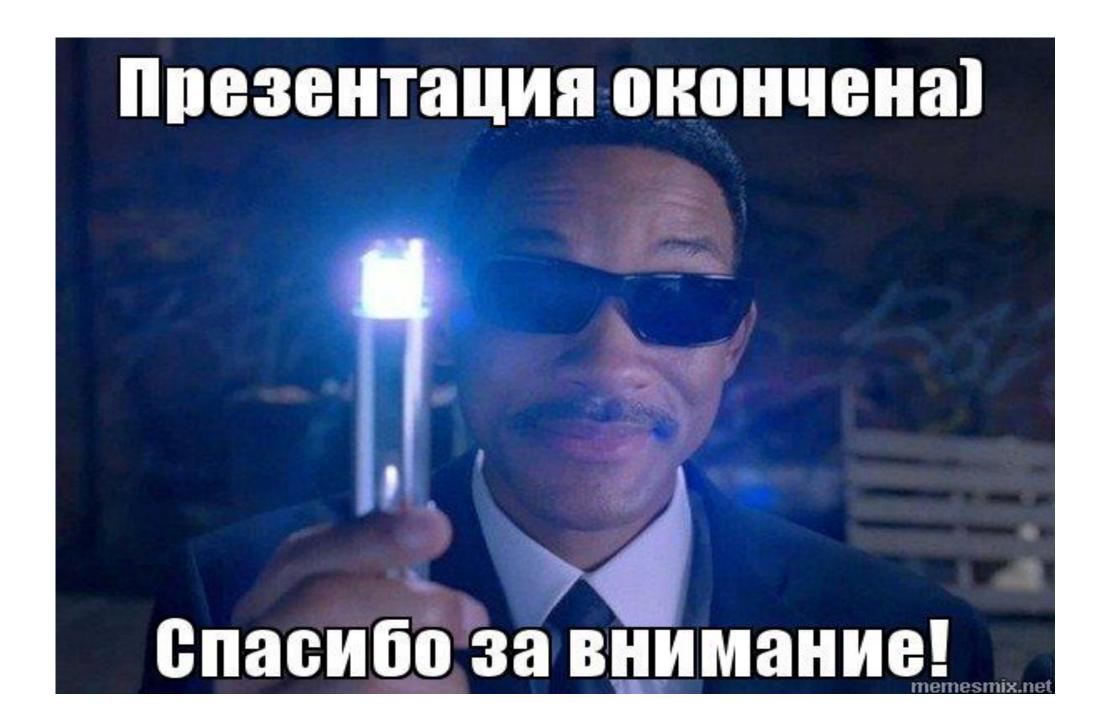
Дисперсионный анализ (тест ANOVA)


$ANOV\!A$							
		Sum of Squares	df	Mean Square	F	Sig.	
Area	Between Groups	349417,653	1	349417,653	1,842	,122	
	Within Groups	150804,896	214	704,696			
	Total	500222,548	215				
Feret Mean	Between Groups	285,495	1	285,495	6,291	,023	
	Within Groups	615,324	214	2,875			
	Total	900,819	215				
Shape Factor	Between Groups	5,309	1	5,309	12,688	,000	
	Within Groups	,879	214	,004			
	Total	6,188	215				



Кластерный анализ (метод ближайшего соседа)




Кластерный анализ (метод ближайшего соседа)

